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Abstract 
Cued shadowing is a psycholinguistic task that captures the 
response speed and accuracy of participants’ vocal repetition of 
target words. Due to its simplicity, the paradigm is widely used 
as a naturalistic measure of speech processing. While the 
COVID-19 pandemic has driven the adaptation of many lab-
based experiments to internet-based data collection, cued 
shadowing is not straightforward to adapt due to various 
challenges, including the precision of timing, efficient 
extraction of response latencies, and control over data quality. 
The current paper presents solutions to these challenges and 
describes the methodology for conducting cued shadowing of 
audio-video stimuli online with children and adults. The 
performance of two (semi-)automatic speech onset detection 
tools and two experimental designs are evaluated. The 
technique developed enables millisecond precision in response 
time measurement and has great potential for the inclusion of 
minority and hard-to-reach communities in future speech 
perception and production research. 
Index Terms: online experimentation, cued shadowing, remote 
data collection, reaction time 

1. Introduction 
A growing number of lab-based psycholinguistic experiments 
have been adapted to an internet-based format, including 
designs that involve the recording of spoken responses. Recent 
work has demonstrated that voice recordings can be collected 
through various modes in non-laboratory settings [1, 2], and can 
yield accurate phonetic measurements of duration and f0 [3, 4], 
as well as reaction time measurements (i.e., response latencies) 
of comparable precision to lab-based experiments when 
collected with a picture-naming task [5, 6]. A related popular 
technique, cued shadowing, poses several technical challenges 
for online data collection and as such has not yet been adapted 
to internet-based experimentation. The current paper addresses 
these challenges by presenting a novel design for internet-based 
audio-visual cued shadowing with children and adults, and 
evaluates different methods for collecting and measuring 
response latencies. 

1.1. Challenges of internet-based cued shadowing 

In the cued shadowing paradigm (also known as ‘auditory word 
repetition’), participants orally repeat auditorily presented 
target words. Cued shadowing does not require literacy or 
metalinguistic knowledge and as such can be used as a 
naturalistic measure of listening effort, i.e., of the resources 
required by a listener to meet the cognitive demands of 
processing speech accurately and efficiently [7, 8]. Moreover, 
internet-based cued shadowing is time- and cost-effective and 

enhances ecological validity by allowing participants to 
complete the research in familiar surroundings. It is therefore 
well-suited to children and adults as well as minority and hard-
to-reach communities.  

A major challenge for internet-based cued shadowing is the 
precise time-locking of voice recordings to the presentation of 
audio-visual stimuli. The continued development of online 
experiment tools in recent years has increased the reliability of 
reaction time measurements [9, 10]. Several well-established 
effects found in lab-based psycholinguistic experiments have 
been replicated using a variety of internet-based experiment 
platforms [11, 12, 13]. Many of the paradigms involve the 
presentation of static stimuli and reaction time measurements 
of keyboard responses. However, the complications involved in 
the presentation and timing of audio-visual stimuli in relation 
to the use of voice recording functions have yet to be addressed.  

Another challenge is that extracting reaction times from 
online collected vocal responses is less straightforward than 
collecting reaction times from keyboard responses. Although a 
number of experiment platforms include a voice recording 
function [5, 6], no internet-based experiment tools feature a 
voice key, i.e., specialist software for automatically detecting 
the onset of vocal responses. Thus, the development of robust 
methods for extracting response latencies efficiently from 
online recordings is required. 

Furthermore, concerns have been raised about the quality 
of data collected online. Since participants cannot be monitored 
closely by the researcher, distraction, background noise, and a 
lack of commitment to the task can negatively impact the data 
quality. With respect to cued shadowing, various technical 
issues can occur, such as interruptions in playing media files 
and suboptimal recording quality, thereby influencing 
measurement accuracy. 

1.2. The current paper 

The current paper presents and evaluates the methodology for 
collecting response latencies with an internet-based cued 
shadowing paradigm in the context of a research study on the 
processing of face mask speech (for the full findings, see [14]). 
The aim of the study was to measure the extent to which 
children (aged 8-12) and adults (aged 20-60) experience 
processing difficulties with face mask speech. The experiment 
was implemented with Gorilla experiment builder [15]. 
Participants were presented with audio-video sentence stimuli 
and asked to repeat the last word of each sentence as quickly as 
possible. Stimuli were manipulated (1) acoustically by 
presenting the audio signal produced with/without a mask, (2) 
visually by displaying the speaker with/without mask, and (3) 
semantically by varying the predictability of the sentence-final 
target words (cloze probability [16, 17]). For example, the 



target word ‘cake’ was embedded in the high Cloze Probability 
context (“For your birthday I baked this cake”) and in the Low 
Probability context (“Tom wants to know about this cake”). 

2. Methodology 

2.1. Experimental design 

2.1.1. Audio-video stimuli 

The stimuli consisted of 120 target words embedded in 240 
English sentences with high and low predictability, which were 
adapted from [17]. Carrier sentences contained five to eight 
words, and all target words were monosyllabic nouns starting 
with a consonant. Stimuli were spoken by a female native 
English speaker with Standard Southern British English accent, 
with and without a cloth face mask. Audio recordings (sampling 
rate of 44.1 kHz at 16 bits) and video recordings (1920-by-1080 
resolution at 50 fps) were made simultaneously in a sound-
attenuated recording booth, and subsequently synchronised in 
Final Cut Pro (version 10.5.2). Each video recording 
(with/without face mask) was paired with the audio recordings 
(with/without face mask). The final audio-video stimuli were 
saved in mp4 format (H.264 video codec, AAC audio codec). 

2.1.2. Trial design 

Each trial began with a 250 ms fixation cross, followed by the 
audio-video presentation of the stimulus. Participants watched 
the audio-video stimulus and then orally repeated the sentence-
final target word before moving on to the next trial. A progress 
bar and the correct answer were displayed on the screen for 
1500 ms before automatically continuing to the next trial. 

In order to capture response times accurately, three 
essential features that deviate from typical trial designs for 
picture naming were implemented [5, 6]. First, instead of 
starting the voice recording function after presenting each 
stimulus, the recording automatically started at the beginning of 
each trial in order to record the stimulus together with the 
participant’s response. This feature was implemented because 
participants sometimes gave a response before the end of the 
trial display, and because there can be a delay between the 
request for the microphone to begin recording and when the 
microphone actually starts recording. Secondly, a single-peak 
acoustic signal of 500 Hz (a ‘beep’) was inserted in the audio-
track of the stimuli before the start of the presented sentence. 
The beep was created in Praat using the formula in (1).  
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The beep not only indicated to the participants that the stimulus 
was going to be played, but more importantly also served as an 
anchor for calculating response latencies. The beep was 
captured more reliably than the spoken part of the stimuli by the 
participants’ computer microphones and could also be easily 
identified by the peak of intensity in the waveform during data 
processing. Thirdly, the display of audio-video stimuli was 
started manually by participants since automatically playing 
videos (i.e., the auto-play feature) is not enabled in all browsers 
and might introduce timing inaccuracies. 

Including the stimuli within the recording file allowed 
precise calculations of response latencies. To calculate response 
latencies, the total duration from the beep to speech onset was 
extracted (X1, Figure 1). The duration of each sentence stimu-
lus was measured separately (X2) and then subtracted from the 
total trial duration to derive response latencies from stimulus 

offset to speech onset. In addition, recording the complete trial 
sequence enabled more effective monitoring of data quality, as 
the recordings gave an indication as to whether there were any 
technical issues or distractions during the experiment. 

 
Figure 1: Trial design for capturing response 

latencies. X1: Duration of trial recording from the 
beep to the response onset. X2: Duration of stimulus 
from the beep to the end of the presented sentence. 

A possible alternative to this design would have been to rely 
on the timing metrics of video events for the stimulus onset 
provided by the experiment platform; however, the robustness 
of these metrics has not yet been tested. Therefore, the current 
design of measuring response latencies from an embedded 
sound anchor will be compared with response latencies derived 
from the video start metric provided by Gorilla in Section 3.3.2. 

2.1.3. Procedure 

Participants performed a speaker and microphone test, and then 
were presented with written instructions and an animated 
demonstration of the task. Participants were instructed to use 
loudspeakers so that the output of the audio stimuli, especially 
the beep, would be captured in the recording. They were 
instructed to say ‘I don’t know’ during the task if they did not 
know the correct answer, as empty recordings are hard to 
interpret. The children’s version of the experiment introduced a 
parrot named Polly and asked the children to ‘teach’ Polly new 
words. The experiment started with 12 practice items and a 
reminder of the instructions. 120 trials were equally distributed 
across four blocks. Finally, a post-experiment questionnaire 
asked participants to report any technical difficulties that 
occurred during the experiment. 

2.2. Data Processing 

2.2.1. Speech onset detection 

One of the tools developed for automatic speech onset 
detection, Chronset [18], has recently been applied for marking 
responses in both web-based and lab-based picture naming 
tasks [5, 19, 20]. Chronset is an easy-to-use online tool that 
detects speech onsets by relying on multiple acoustic features. 
However, Chronset is unable to identify the onset of a 
participant’s response if the recording file to be analysed 
includes additional speech sounds as is the case in the current 
design. Although most of Chronset’s measurement errors lie 
within 50 ms [18], this variation could obscure small psycho-
linguistic effects. Therefore, a data processing pipeline was 
developed using Praat [21] (scripts available on OSF [22]) to 
derive the duration from the beep to the speech onset in each 
recording file (X1, Figure 1). The pipeline made use of 
Chronset and an additional, intensity-based tool to facilitate 
accurate speech onset detection: 
1. For each trial, an interval containing the beep and an interval 
with the participant’s response were marked in a Praat textgrid. 



2. In the intervals that contained the beep, the time point of the 
maximum intensity was extracted with a Praat script. 
3. The intervals containing participants’ responses were separa-
ted from the full recording file, and 50 ms of silence was added 
at the beginning and end of each file to allow correct func-
tioning of the speech onset detection tools. Speech onsets were 
detected with Chronset and the custom Praat script. The latter 
marked the response onset based on an intensity threshold that 
could be manually adjusted to each participant. 
4. The automatically identified speech onsets were manually 
corrected by one of three trained phoneticians (henceforth 
‘raters’) with partial cross-checking. To facilitate this process, 
a Praat script was developed to zoom the view window auto-
matically to +/- 50 ms of the estimated speech onset and allow 
raters to accept or correct the speech onset marking. The 
corrected speech onset was then automatically aligned to the 
nearest zero crossing. 

2.2.2. Criteria for manual speech onset correction 

The manual corrections of response onsets followed commonly 
used phonetic criteria that all raters agreed upon before taking 
measurements, thereby minimising any differences in phonetic 
judgement. For sonorants (e.g., [r], [m]), the onset was defined 
as the first upward-going zero crossing of the regular sinusoidal 
curve on the waveform. For plosives (e.g., [p], [pʰ]), the onset 
was measured from the start of the spike that indicated a burst, 
in accordance with voice onset time measurements [23]. 
Fricative onset (e.g., [f], [ʃ]) was defined as the point at which 
high frequency energy first appeared on the spectrogram and/or 
the point at which the number of zero crossings rapidly 
increased [24]. When preceding voicing was present in voiced 
fricatives or voiced plosives, e.g., pre-nasalisation or pre-
voicing, the start of voicing was considered the speech onset. 

2.2.3. Participant Screening 

Participants were screened through several means, which 
addressed most concerns over the quality of online collected 
data: (1) the post-experiment questionnaire in which 
participants self-reported whether they had encountered any 
technical problems with the video, audio, or voice recordings 
(Section 2.1.3); (2) Gorilla’s experiment platform metrics, 
containing information about video loading delays and 
recording errors; (3) screening of the voice recording files by 
the researchers for unwanted noise, distractions, or suboptimal 
quality.  

3. Results and Evaluations of Methods 

3.1. Data quality 

Out of 78 adults and 67 children who completed the experiment 
between July and September 2021, 21% of the participants were 
excluded for not fulfilling the recruitment criteria or not 
following the instructions. 30% of the participants were 
excluded due to the occurrence of one or more technical 
problems with the audio-video display or the voice recordings. 
This left a participant group of 40 adults and 26 children. The 
relatively large video size (10 MB) was likely to be the main 
cause of video playback problems, suggesting that stimuli files 
should be compressed to a smaller size. Furthermore, word-
initial fricatives were less reliably recorded and thus difficult to 
measure, so researchers may want to avoid target words with a 
fricative onset in future online experiments. Individual trials 

were also discarded if the responses were of poor recording 
quality or if the speech onset could not be identified reliably 
(0.50% of 5653 trials, from 26 children and 26 adults). 

3.2. Results of response latencies 

A full report of the results can be found in the associated paper 
on face mask speech processing [14]. Response times of all 
accurate responses were analysed with linear mixed-effects 
models. The results revealed both small-sized effects (under  
50 ms) and medium-sized effects (under 100 ms) comparable 
to lab-based experiments. The model showed significant main 
effects of acoustic mask, visual mask, and cloze probability on 
response latencies in the expected direction: On average, 
responses to acoustically masked speech were 30 ms slower 
than unmasked speech (b = -12.64, 95% CI [-18.18, -7.09], p < 
0.001), responses to a video of the speaker with a visual mask 
were 30 ms slower than the same speaker without a mask (b = 
-13.11, 95% CI [-18.73, -7.48], p < 0.001), and responses to low 
cloze probability targets were 79 ms slower than high 
probability targets (b = -40.89, 95% CI [-53.88, -27.90], p < 
0.001). 

3.3. Evaluation 

The manually corrected response latencies of the present design 
were compared to the response times derived from two 
automatic speech detection methods without corrections: 
Chronset and an intensity-based Praat script (Section 3.3.1.).  

The design of the present study was also compared to an 
alternative design that relies on the video’s ‘timeupdate event’ 
instead of an inserted sound anchor in the audio track of the 
stimuli (Section 3.3.2.). The ‘timeupdate event’ is provided by 
Gorilla and is supposed to capture the precise start of the 
presented video stimuli. Provided that this metric is accurate, 
the calculation of response latencies would no longer require a 
sound anchor, thereby significantly simplifying the design. 
Instead, response latencies could be derived by subtracting the 
video start time and stimulus duration (cf. Figure 2).  

 
Figure 2: Alternative design for capturing response 
times based on video metric. X1: Duration from the 

start of trial recording to speech onset. X2: Duration 
from file start to sentence end. X3: Video event start 

minus recording start as captured by Gorilla. 

Two measures were used to evaluate performance [18]:  
(1) absolute-difference scores, reflecting the absolute difference 
between response times derived from manual vs. automatic 
speech onset detection, and (2) regression fit, with manual 
measurements as the dependent variable. The regression fit 
quantifies the relationship between automatic estimates and 
manual ratings based on fit (R2) and regression residuals (the 
unobserved error that can be attributed to either the manual or 
the automatic scores). All comparisons are visualised in Figures 
3 and 4. 



3.3.1. Comparison of automated and manual measurements 
of speech onset 

With respect to absolute-difference scores, 75% of the 
measurements from Chronset differed by 50 ms or less from the 
manual measurements, while 28% differed by 10 ms or less. In 
comparison, over 83% of the intensity-based measurements 
deviated by 50 ms or less from the original measurements, and 
46% by 10 ms or less. While the performance of the two tools 
was comparable for affricates, plosives, and sonorants, there 
was a large discrepancy in performance for fricatives. While 
77% of intensity-based fricative measurements deviated from 
manual measurements by 50 ms or less, only 63% of Chronset 
measurements achieved this level of precision.  

With respect to regression fits, a strong linear relationship 
was observed between manual ratings and automatic scores 
from Chronset (b = 0.80, R2 = 0.80, Figure 3 (A)) and between 
manual ratings and the intensity-based tool (b = 0.61, R2 = 0.60, 
Figure 3 (B)). Figure 4 shows the cumulative density function 
of the regression error of the intensity-based script (black line) 
and Chronset (orange line) compared to manual measurements. 

 
Figure 3: Comparison of manual and automated 

measurements for calculating response latencies. The 
red lines represent the lines of identical correspon-

dence, and the blue lines represent the regression fit. 

 
Figure 4: Empirical cumulative distribution function 
of the absolute difference of speech onset estimates 

and regression residuals relative to manual markings.  

Taken together, the intensity-based measurements showed 
more outliers (i.e., onset estimates strongly deviating from 
manual measurements) than Chronset measurements, but 
achieved better precision in terms of absolute-difference after 
excluding outliers. Because the intensity threshold could be 
adjusted to each participant, the measurements based on 
intensity provided a more convenient baseline for manual 
correction. Chronset measurements yielded a stronger 

correlation with manual measurements and more concentrated 
regression errors than the intensity-based estimates. However, 
the overall performance of Chronset was lower than reported in 
[18], deviating more strongly from the raters’ manual speech 
onset markings than intensity-based measurements. This could 
be the case because Chronset relies on different onset marking 
criteria than those used by the raters or because of the reduced 
quality of recordings collected online compared to responses 
collected with professional equipment. 

3.3.2. Comparison of current experiment design to the design 
using video event metric 

Response latencies calculated with Gorilla’s video ‘timeupdate 
event’ achieved results close to the original trial design (presen-
ted in Section 2.1.2.): 85% of the errors deviated by 50 ms or 
less from the original measurements, and 23% of the errors 
deviated by 10 ms or less. The regression model showed few 
outliers and the coefficient was close to one (b = 0.98, 
R2 = 0.98), indicating an almost perfect correspondence 
between the two designs (shown in Figures 3 (C) and Figure 4 
respectively). This finding provides the first empirical evidence 
that timing measurements derived from video ‘timeupdate 
event’ metrics are highly reliable. Therefore, future cued 
shadowing designs and online data processing can be 
simplified. The new design would also allow the use of 
headphones for better stimulus sound quality, since it does not 
require the recording of a ‘beep’ signal through the participants’ 
device. A shortcoming of the method using the ‘timeupdate 
event’ metric, however, is that sometimes video files may not 
be successfully pre-loaded, resulting in inaccurate video 
playing metrics. In the present evaluation, a further 14% of the 
data (787 trials) were lost due to inaccurate event metrics. 
Furthermore, close monitoring of data quality would not have 
been possible by relying on platform metrics only. 

4. Conclusions 
The present paper demonstrates that response latencies can be 
collected accurately with internet-based cued shadowing from 
children and adults. The trial design presented here, which 
relied on a sound anchor being recorded together with the 
participants’ vocal responses, provided accurate measurements 
for response times and enabled effective monitoring of data 
quality. Effect sizes for small (30 ms) and medium-sized 
(79 ms) effects were comparable to lab-based studies. The 
speech onset detection tools (Chronset and an intensity-based 
Praat script) facilitated manual markings of online-collected 
speech data, but the evaluation revealed that their correct 
functioning relies on the recording quality of the collected data. 
Moreover, measuring response latencies from a sound anchor 
to mark the beginning of a new stimulus aligned almost 
perfectly with measuring latencies using the video ‘timeupdate 
event’ metric provided by the experiment platform. Using 
‘timeupdate’ metric could simplify the online collection of 
vocal response latencies in the future if trial loss from technical 
errors can be reduced. 
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